A student at sea…

By Brijonnay Madrigal (SEC Program Assistant & Graduate Student at Moss Landing Marine Labs)

Fish Communicate

Figure 1. The Velero IV (Photo credit: Ryan Fields).

Did you know that fish make sounds? They do! Some fish species, like the rockfish you eat in your fish tacos, are soniferous (sound producing). Fish produce a drumming sound by striking the gasbladder (swim bladder) and the sonic muscle together. Rockfish (Genus Sebastes spp.) are a genus that produce low frequency sounds associated with agonistic interactions and territorial defense. Due to this ability, it is proposed that rockfish may elicit an acoustic response due to increased noise produced by survey vehicles used to study rockfish populations. This concept fueled NOAA’s desire to deploy hydrophones to record survey vehicle operations in Southern California and rockfish in these areas. This acoustic work was one component of the Untrawlable Habitat Strategic Initiative (UHSI) SoCal Project, a collaborative effort between NOAA Northwest, Alaska, and Southeast Fisheries Science Centers. The goal of the 2-year project was to assess rockfish response to survey vehicles and determine the biases in studying rockfish using vehicles such as AUV’s (Autonomous Underwater Vehicles- like the one displayed at the SEC) and HOV’s (Human Operated Submersibles). Cruises were conducted in the Channel Islands in October 2016 and this last month in October 2017. Last year I was a data analyst for the project but this year, I got the opportunity to be a part of the research team onboard. I worked along scientists from the SWFSC Fisheries Ecology Division in Santa Cruz, CA and NWFSC Fishery Resource Analysis and Monitoring Division in Newport, OR. My role was to handle all operations for the 3 hydrophones we deployed along with a variety of sensors including a turbidity meter, light sensors, and accelerometers. The cruise was 2 ½ weeks long and the longest duration of time I had ever spent at sea so I was excited to get away from land for a bit and live on a ship for 18 days!

Home at Sea

Figure 2. The platforms.

The ship that would be my home for the next 2 ½ weeks was the Velero IV (Figure 1), a shipping vessel from Seattle, Washington that had been modified for this project. An extra sleeping quarters had been transferred onboard as well as a lab for the scientist that consisted of a one room cubicle with benches that they had placed on the ship using a crane. We spent the first day docked in Ventura Harbor preparing the platforms we would be deploying. The 3 platforms (Figure 2) (each named after a different Fisheries Science Center) were fitted with DIDSON imaging sonar, that produce images of the fish used to quantify species and measure fish lengths. MOUSS cameras were also placed on the platforms which took pictures every 2 seconds and are used to assess fish movement, species diversity and abundances. While the research team worked on putting together the platforms, the submersible team was hard at work preparing the DeepWorker manned submersible which would be used to deploy the platforms on the sea floor (Figure 3). We departed from Ventura, CA on October 9th and set out to sea at sunset. I was nervous at first, wondering what the conditions would be like especially since I am prone to seasickness but fortunately, almost every day was beautiful and calm in sunny Southern California.

A Typical Day

Figure 3. The submersibles.

There was no need for my phone alarm in the morning because between the loud clanking of the anchor being pulled up and the smell of bacon, we were always up by 6:30am. The Velero IV would leave Smuggler’s Cove off Santa Cruz Islands and after a short journey to our survey area would arrive at site at 7am. Our survey area was Footprint Bank, an area between Santa Cruz and Anacapa Island where 3 sites had been determined as locations to deploy the platforms. Once on site, the science team turned on all devices, placed them on the platforms and then with the help of the crew and sub team, the platforms were lowered over the side of the vessel. The sub attached a line to the platform using a metal claw that would allow the platform to be descended to the bottom (Figure 4). Once at the bottom, the sub operator would un-attach the line and we would then continue to the next site. After all 3 platforms were deployed we would leave the area and return to Smuggler’s Cove for a 3-hour period while the NOAA Shimada vessel conducted AUV flybys and seafloor mapping. At approximately 3pm we would return to Footprint Bank and the sub might conduct some flyby passes near the platforms prior to retrieving the platforms before sunset.

Amazing Marine Life

Figure 4. Deploying the Alaska platform one morning. The sub is in the water preparing to take the platform down to the bottom.

Throughout the day we would always see marine mammal. I was the only marine mammal scientist onboard so if marine mammals were sighted, the crew and research team always called me to the top deck to identify species. We saw pods of bottlenose dolphin, long-beaked common dolphin, Risso’s dolphin and an extremely active lone humpback breaching and tale slapping one day. After we headed back in and anchored in Smuggler’s Cove for the night, I would go up to the bow of the ship to see the “show”. Bioluminescence glowed green in the water and even in the middle of the night you could see sea lions chased schools of fish and track the movements underwater as their bodies glowed green…it was like Fourth of July in October! One night, as we were heading into Santa Barbara to anchor up for the night, I was looking at the water from the top deck when suddenly, I saw these green glowing torpedoes moving in the water near the bow of the vessel, spinning and crossing each other as they glided through the water. I went down to the bow to get a closer look and saw they were dolphins bow riding! The bioluminescence in the water was causing their torpedo shaped bodies to be outlined by a green glow which allowed you to see their every movement in the dark water. It was the most amazing thing I had ever seen!

Rockfish are a dominant demersal fish species in benthic ecosystems and are of recreational and commercial importance in California. The UHSI project is important as it will shed light on some important implications for ground fish research and the anthropogenic impacts on these species. I was grateful to have the opportunity to be involved in the data collection process, so I could gain a better understanding of the project and perspective on the data. Going out to sea makes all the long hours of analyzing data and staring at a computer screen worth it!

A day in the life of an elephant seal biologist at Año Nuevo State Park

BEEP! BEEP! I roll over to turn off my alarm and read the clock: 4:30 a.m. Begrudgingly I arise, slip into my field clothes, and head to the kitchen to make breakfast before beginning the forty-five minute commute to Long Marine Lab (LML). As I drive north, I mentally prepare myself for the day ahead. Today our focus is assisting with the annual weanling weighing effort. Upon arrival at LML, the field crew assembles all necessary gear, electronically checks into the park, and then piles into the truck. As we cruise up Highway 1 the sky begins to lighten, gradually revealing the charming California coast while the truck buzzes with conversation.

Twenty minutes later the truck pulls into the entrance of Año Nuevo and turns right down the limited access road. The progression is slow as we carefully survey the dirt road for endangered San Francisco garter snakes.I take this opportunity to observe the magnificent landscape, hoping to catch a glimpse of deer, coyotes, bobcats, or the elusive cougar. Alas, no such luck today. Instead, I admire the soft glow of the early morning light and the captivating shades of pink and orange spilling across the sky, signaling the eminent arrival of the sun. I feel excitement start to build as we park the truck.

Grabbing the gear, we hike to the beach, maneuvering through streams, marshes, and dunes along the way. Various animal tracks crisscross over the sand, reminding me that I am merely a guest. The elephant seal calls fill my ears, and I know we are close. We emerge onto the beach as the sun makes its morning debut atop the Santa Cruz Mountains and casts light onto the awe-inspiring scene before us.

Pelicans and cormorants congregate on the western point, paling in comparison to the demanding presence of the elephant seals. Nursing females, defensive bulls, dozing juveniles, and curious weanlings cover the beaches and play in the surf. We appreciate this scene for only a moment before setting off to find our first weanling.

Scanning the beach for a good candidate, I can’t help but notice the diversity of rocks, shells, and bones that decorate the sand; untouched by human hands and I absorb the beauty. Within minutes we find a prime candidate, indicated by its unique bleach mark. We set down our gear, delegate tasks, and establish a plan emphasizing the safety of the researchers and animals is paramount then get to work.

One group begins to set up the tripod, attaching the scale and come-along winch to the tripod before anchoring its feet into the sand. Meanwhile, I am tasked with capturing the weanling. For this, a custom-made canvas bag is used to help protect the seal and the researchers as we collect our measurements. Rolling back the seam of the bag, I slowly creep toward the weanling. Suddenly aware of my presence the weanling raises its head to maintain visual contact. Using this to my advantage, I swiftly sweep the bag onto its head. Another researcher steps in and together we carefully wrestle the seal into the bag taking extra care not to harm its flippers. In the process, we expose its belly and identify thesex as male before securing the bag. With impressive coordination, three people position the tripod over the weanling while I connect the bag to the come-along winch via a metal weigh bar. I crank the winch lever slowly lifting the seal until he is completely suspended, record his mass, and then immediately lower him to the ground. Once the weigh bar is removed one pair of researchers relocates the tripod assembly while I assist my field mate collect body measurements and a fur sample. Next, we add green flipper identification tags. Two tags are inserted to indicate he has been measured and weighed. Finally, I release the weanling from the bag and estimate percent molt as he galumphs across the sand. Despite what it may seem, the process lasted only ten minutes.

Nine weanlings later, my watch reads 9:15 a.m. and it’s time to depart. On our return hike we encounter a ranger, stop momentarily, say hello, and summarize the morning. Once again, the truck is filled with chatter, this time with questions and lingering thoughts regarding our morning. Upon returning to the labs the gear is cleaned, bags are restocked, and samples are stowed. For the team, this marks the completion of our morning. However, before my morning concludes, I must enter the data. Another forty-five minutes in the car flies by as I reflect on my Año Nuevo morning and silently appreciate the opportunity to experience this wondrous place.