Variable responses of temperate calcified and fleshy macroalgae to elevated pCO$_2$ and warming

S. L. Kram1*, N. N. Price1, E. M. Donham2, M. D. Johnson1, E. L. A. Kelly1, S. L. Hamilton2, and J. E. Smith1

1Center for Marine Biodiversity and Conservation, Marine Biology Research Division, Scripps Institution of Oceanography, La Jolla, CA 92093-0202, USA

2Moss Landing Marine Laboratories, 8272 Moss Landing Road, Moss Landing, CA 95039, USA

*Corresponding author: tel: +415 497 5811; fax: +858 822 2167; e-mail: skram@ucsd.edu

Present address: Bigelow Laboratory for Ocean Sciences, 60 Bigelow Drive, East Boothbay, ME 04544, USA.

Received 29 April 2015; revised 24 August 2015; accepted 31 August 2015.

Anthropogenic carbon dioxide (CO$_2$) emissions simultaneously increase ocean temperatures and reduce ocean surface pH, a process termed ocean acidification (OA). OA is expected to negatively affect the growth and physiology of many calcified organisms, but the response of non-calcified (fleshy) organisms is less well understood. Rising temperatures and pCO$_2$ can enhance photosynthetic rates (within tolerance limits). Therefore, warming may interact with OA to alter biological responses of macroalgae in complicated ways. Beyond thresholds of physiological tolerance, however, rising temperatures could further exacerbate negative responses to OA. Many studies have investigated the effects of OA or warming independently of each other, but few studies have quantified the interactive effects of OA and warming on marine organisms. We conducted four short-term independent factorial CO$_2$ enrichment and warming experiments on six common species of calcified and fleshy macroalgae from southern California to investigate the independent and interactive effects of CO$_2$ and warming on growth, carbonic anhydrase (CA) enzyme activity, pigment concentrations, and photosynthetic efficiency. There was no effect of elevated pCO$_2$ on CA activity, pigment concentration, and photosynthetic efficiency in the macroalgal species studies. However, we found that calcareous algae suffered reduced growth rates under high pCO$_2$ conditions alone, although the magnitude of the effect varied by species. Fleshy algae had mixed responses of growth rates to high pCO$_2$, indicating that the effects of pCO$_2$ enrichment are inconsistent across species. The combined effects of elevated pCO$_2$ and warming had a significantly negative impact on growth for both fleshy and calcareous algae; calcareous algae experienced five times more weight loss than specimens in ambient control conditions and fleshy growth was reduced by 76%. Our results demonstrate the need to study the interactive effects of multiple stressors associated with global change on marine communities.

Keywords: carbon-concentrating mechanisms, carbon dioxide, carbonic anhydrase, global warming, multiple stressors, photosynthesis, seawater pH.

Introduction

The continued release of anthropogenic carbon dioxide (CO$_2$) from the burning of fossil fuels is a major driver of climate change, and is predicted to result in an increase in sea surface temperature and decreased pH in open ocean surface waters (IPCC, 2013). The oceanic uptake or absorption of anthropogenic CO$_2$ has already resulted in a drop of 0.1 pH units (and, consequently, a 16% decrease in aragonite and calcite saturation state) in open ocean surface water (Caldeira and Wickett, 2003; Feely et al., 2012), a process termed ocean acidification (OA). Continued absorption of CO$_2$ by the ocean is predicted to further reduce open ocean surface pH by 0.06–0.32 units by the end of the 21st century, through associated changes in carbonate chemistry, whereas atmospheric warming is predicted to result in an increase in sea surface temperature by 0.6–2.0°C (IPCC, 2013). Both OA and warming have the potential to negatively impact organisms’ success and survival. Many OA studies to date have tested the effects of increased CO$_2$ in isolation (often with constant and stable carbonate chemistry parameters), reporting negative effects on survival, growth, calcification, and reproduction for many marine organisms (Hendriks et al., 2010;
Kroeker et al., 2010, 2013; McCoy and Kamenos, 2015). However, these studies have not necessarily been representative of the environmental conditions organisms experience in situ. Recent evidence indicates that natural variation in the carbonate system near shore is much more complex and difficult to predict than in the open ocean (Hoffmann et al., 2011; Frieder et al., 2012); this variation has only recently been incorporated into experimental designs (Cornwall et al., 2013). Additionally, studies thus far predominantly test only a single stressor, and are therefore unable to capture synergistic effects of warming and elevated CO₂ (but see Anthony et al. (2008), Martin and Gattuso (2009), Byrne (2011), Diaz-Pulido et al. (2012), Johnson and Carpenter (2012), and Williams et al. (2014)), which may exacerbate or mitigate the effects of changing carbonate chemistry on species’ performances. We addressed these issues by investigating the combined effects of increased CO₂ and warming on ecologically important temperate, fleshy, and calcified macroalgae.

Because of the necessary and diverse ecosystem services that different species of macroalgae provide, such as food, habitat, refugia, and settlement cues for invertebrate larvae, it is vital to understand their physiological tolerances and responses to environmental stressors (i.e. warming and OA), which in turn will determine population abundance and distribution. Calcified and fleshy algae may exhibit opposing responses to OA due to different physiological demands for particular carbon species. CO₂ enrichment has been shown to negatively affect the growth, calcification, and reproductive rates of at least some species of calcareous algae, as well as their physiological performance and competitive abilities (Gao et al., 1993; Kleypas and Langdon, 2006; Diaz-Pulido et al., 2007; Anthony et al., 2008; Fabry et al., 2008; Kuffner et al., 2008; Martin and Gattuso, 2009; Price et al., 2011; Johnson et al., 2014a; Williams et al., 2014). Fleshy macroalgae, in contrast, exhibit more variable responses to increased CO₂ (Beardall et al., 1998; Cornwall et al., 2012; Johnson et al., 2014a), yet the physiological mechanisms underlying these responses are still largely unknown.

The lack of consistent responses among fleshy algae to CO₂ enriched seawater could be due, in part, to the capacity of different taxa to utilize different species of dissolved inorganic carbon, such as bicarbonate (HCO₃⁻), for photosynthesis. Macroalgae are able to uptake CO₂ directly via passive diffusion, but many species are unable to achieve maximum rates of photosynthesis using only CO₂ (Kühler et al., 1999; Morison et al., 2005). CO₂ is the least abundant species of inorganic carbon in seawater, it is highly diffusive, and it is thus difficult to concentrate at the site of photosynthesis. Some algae have evolved the use of carbon-concentrating mechanisms (CCMs), such as the enzyme carbonic anhydrase (CA), to convert bicarbonate (more easily concentrated in cellular tissue) to CO₂ (Sültemeyer, 1998). CA activity can be used as a proxy to assess whether marine algae employ internal and/or external CA as a CCM for photosynthesis. CA is energetically costly (Hepburn et al., 2011), but pelagic phytoplankton have been shown to down-regulate CA production under CO₂ enrichment because dissolved CO₂ is no longer limiting (Hopkinson et al., 2011). Benthic algae may respond similarly, but this hypothesis has been tested on only a limited number of species (García-Sánchez et al., 1994; Hofmann et al., 2012a). Macroalgae that are able to down-regulate CA activity may then be able to divert further energy into somatic or reproductive growth and/or photosynthetic machinery such as photosynthetic pigments.

In addition to CO₂, temperature-adaptive physiological variation and ecological interactions are instrumental in structuring the biogeography and distribution of many marine species (Stillman, 2002; Compton et al., 2007). Increases in temperature elevate the metabolic rates of many organisms living well within optimal temperature envelopes. In primary producers, photosynthetic rates gradually increase with temperature until an optimum is reached; if temperatures continue to rise and exceed thermal tolerance limits, photosynthetic rates will decline precipitously (Davison, 1991). Photosynthetic rates increase through the production of more photosynthetic pigments, or by increasing photosynthetic efficiency (Schreiber, 2004). Therefore, overall growth, productivity, and pigmentation of macroalgae are expected to be positively affected by temperature increases (Pereira et al., 2006), within an optimal temperature envelope.

While the impacts of elevated CO₂ and increased temperatures have been investigated individually, little is known about the potential interaction between CO₂ and rising ocean temperatures on the physiology of marine algae. Due to the potential positive effects of warming on photosynthesis, it has been suggested that increased temperatures may allow organisms to compensate for the negative effects of OA. However, the limited research available suggests these two stressors result in synergistic antagonistic impacts on calcifiers, such that warming exacerbates the effect of CO₂ enrichment (Anthony et al., 2008; Gao et al., 2012; Diaz-Pulido et al., 2012). Relatively few multistressor studies exist to date for fleshy species [but see Connell and Russell, (2009)], but we predict that increased CO₂ and temperature would have a synergistic positive effect because both CO₂ and temperature have the potential to increase photosynthetic rates.

The response of organisms to environmental stressors, such as OA and warming, may be influenced by the extent of habitat specialization. Some species are ecological generalists and have wider tolerances for fluctuating temperature and/or pCO₂, and may be better equipped to tolerate and/or acclimate, and ultimately to survive, future global change (Zerebecki and Sorte, 2011). Most OA experiments have been conducted in recirculating or flow-through aquaria experiencing constant ambient control or elevated CO₂ conditions. However, recent studies have documented that pH and pCO₂ in the natural environment are highly dynamic, especially in shallow coastal systems. The variability in pCO₂ that exists over a diel or tidal cycle or during an upwelling event includes conditions equivalent to or surpassing those expected to occur by the turn of the century under OA (Hoffmann et al., 2011). Therefore, some taxa, such as ecological generalists, may already have the potential to acclimate and cope with changing ocean chemistry. For example, Johnson et al. (2014b) found that Parolithon onkodes, a crustose coralline alga collected from a habitat experiencing more variable pCO₂, was able to calcify 42% more than individuals from habitats experiencing more constant conditions. This disparity indicates that organisms already existing in dynamic pCO₂ habitats may be acclimated to future OA. Given this variability in environmental conditions and species’ response, it must be emphasized to capture natural variation in temperature and pCO₂ in experiments to enable more realistic predictions of ecosystem-level responses in the future.

In this study, we assessed the responses of six functionally different, common southern California macroalgae to increased pCO₂ and warming, by elevating temperature and pCO₂ above the existing natural variability of local coastal conditions. The species chosen were representative of potential varied vulnerabilities to OA and/ or warming based on ecological habitat specialization, species origin (native vs. invasive species), and functional morphology.
(calcified vs. fleshy, and articulated vs. encrusting). We measured several biological responses including growth rate, calcification rate, photosynthetic efficiency, pigment concentration, and CA activity. Two types of experiments were conducted: single manipulation (elevated pCO2 only) and factorial design (elevated pCO2 crossed with elevated temperature). In the pCO2-only experiments, we hypothesized that calcareous algae would experience decreased growth and calcification rates under naturally fluctuating, high pCO2 conditions. If the fleshy algae downregulated CA activity, we predicted that they would be positively affected (increased growth, pigmentation, and photosynthetic efficiency) by the pCO2 treatment. However, if CA enzyme activity was not downregulated, or ecological generalist, would respond more positively to pCO2 than the native counterpart. Calcified articulated species were predicted to respond more negatively to increased pCO2 than calcifying species, due to higher surface area exposure to reduced carbonate saturation state seawater. In the factorial experiments, we expected all algae to have increased growth, production, photosynthetic efficiency, and higher pigment content under the warming treatment. We predicted that only the fleshy algae would have a synergistic positive effect with the combination of high pCO2 and temperature, and that calcified algae would have mixed responses.

Material and methods

Study species and study system

All experiments were conducted in an experimental flow-through seawater system at the Scripps Institution of Oceanography (SIO) in La Jolla, California, from July 2012 to March 2013. Six commonly occurring calcified and fleshy macroalgae were chosen for four independent elevated pCO2 or elevated pCO2 × warming experiments that ranged in length from 17 to 31 d (Table 1). Two elevated pCO2 experiments were conducted with paired species of algae comparing the effects of increased pCO2 on (i) native and non-native brown fleshy algae (*Dictyopteris undulata* and *Sargassum horneri*) and (ii) articulated and encrusting calcareous red algae (*Jania adhaerens* and *Lithothamnion californicum*). Elevated pCO2 and warming experiments examined responses of single algal species to multiple stressors, including the fleshy red alga, *Plocamium cartilagineum*, and the calcified articulated red alga, *Corallina vancouveriensis*. Specimens were collected subtidally by snorkel (within 12 km of SIO) or from the low intertidal zone, 10 replicates per treatment and species. For the two combined pCO2 and warming experiments, factorial manipulations of pCO2 and temperature were used, with target values for temperature (ambient = 15–17°C and elevated = +2°C above ambient) and pCO2 at 400 and 900 μatm, with n = 10 replicates per treatment (Figure 1). All treatment levels were selected based on the IPCC (2013) Representative Concentration Pathway (RCP) 8.5 for conditions projected in 2100.

Aquaria were maintained under four full-spectrum 54 W Giesemann T-5 fluorescent bulbs (Supplementary Figure S1). The lights mimicked sunrise and sunset by gradually increasing or decreasing light levels over the course of an hour and were set to 10 h of daylight for experiments conducted in winter and 14 h of daylight in experiments conducted in summer (Table 1). Ambient and treatment aquaria alternated positions along the bench and their locations were rotated weekly to prevent lighting dissipation effects.

Each aquarium contained an individual algal specimen and was continuously supplied with flow-through filtered seawater (0.25 l filtered seawater min⁻¹). Constant seawater flow rates within each aquarium were maintained using Rain Bird pressure compensator modules placed within Rain Bird Xeri-Bird 8-Outlet Manifolds. This flow-through design prevented nutrient limitation or total alkalinity draw-down due to calcification in the long-term experimental setting, and allowed for natural temporal pH variability and high replication per treatment level.

pCO2 treatments

Mass flow controllers (Omega FMA 5400/5500) were used to blend ambient air with pure CO2 before bubbling gases into each aquarium to create experimental conditions. Filtered ambient air, originating in a non-oil-based Ingersoll air compressor, was sent offshore at 3–4 m depth. Algal epiphytes were removed by hand using tweezers and specimens were dipped in insecticide (Garden Tech Sevin Concentrate Bug Killer: 4 l seawater: 20 ml Sevin) 2 d before the initiation of the experiment to remove herbivorous invertebrates that were found to have significant effects on biomass in preliminary trials. Carpenter (1986) showed that Sevin has no negative effects on algal biomass or productivity. Algal specimens were loosely attached to mesh stands and each placed in 1 l experimental aquaria.

Experimental conditions

The two single-manipulation pCO2 experiments were conducted, with two levels of pCO2 targeted at 400 and 900 μatm, with n = 10 replicates per treatment and species. For the two combined pCO2 and warming experiments, factorial manipulations of pCO2 and temperature were used, with target values for temperature (ambient = 15–17°C and elevated = +2°C above ambient) and pCO2 at 400 and 900 μatm, with n = 10 replicates per treatment (Figure 1). All treatment levels were selected based on the IPCC (2013) Representative Concentration Pathway (RCP) 8.5 for conditions projected in 2100.

Aquaria were maintained under four full-spectrum 54 W Giesemann T-5 fluorescent bulbs (Supplementary Figure S1). The lights mimicked sunrise and sunset by gradually increasing or decreasing light levels over the course of an hour and were set to 10 h of daylight for experiments conducted in winter and 14 h of daylight in experiments conducted in summer (Table 1). Ambient and treatment aquaria alternated positions along the bench and their locations were rotated weekly to prevent lighting dissipation effects.

Each aquarium contained an individual algal specimen and was continuously supplied with flow-through filtered seawater (0.25 l filtered seawater min⁻¹). Constant seawater flow rates within each aquarium were maintained using Rain Bird pressure compensator modules placed within Rain Bird Xeri-Bird 8-Outlet Manifolds. This flow-through design prevented nutrient limitation or total alkalinity draw-down due to calcification in the long-term experimental setting, and allowed for natural temporal pH variability and high replication per treatment level.

pCO2 treatments

Mass flow controllers (Omega FMA 5400/5500) were used to blend ambient air with pure CO2 before bubbling gases into each aquarium to create experimental conditions. Filtered ambient air, originating in a non-oil-based Ingersoll air compressor, was sent

Table 1. Details of each of the four experiments performed in this study (two elevated pCO2 only and two elevated pCO2 and warming experiments on southern CA macroalgae).

<table>
<thead>
<tr>
<th>Exp #</th>
<th>Experiment type</th>
<th>Dates</th>
<th># Days</th>
<th>Species 1</th>
<th>Cal/ non-cal</th>
<th>Native/ invasive</th>
<th>Species 2</th>
<th>Collection depth</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 OA</td>
<td>3 July 2012–19</td>
<td>17</td>
<td>D. undulata</td>
<td>Non-cal</td>
<td>Native</td>
<td>S. horneri</td>
<td>Non-cal</td>
<td>Intertidal</td>
</tr>
<tr>
<td>2 OA</td>
<td>26 July 2012–22</td>
<td>27</td>
<td>J. adhaerens</td>
<td>Cal</td>
<td>Native</td>
<td>L. californicum</td>
<td>Cal</td>
<td>Intertidal</td>
</tr>
<tr>
<td>3 OA + warming</td>
<td>28 November 2012–19</td>
<td>21</td>
<td>P. cartilagineum</td>
<td>Non-cal</td>
<td>Native</td>
<td>–</td>
<td>–</td>
<td>Intertidal</td>
</tr>
<tr>
<td>4 OA + warming</td>
<td>5 February 2013–8 March 2013</td>
<td>31</td>
<td>C. vancouveriensis</td>
<td>Cal</td>
<td>Native</td>
<td>–</td>
<td>–</td>
<td>Intertidal</td>
</tr>
</tbody>
</table>

Cal, calcified; Non-cal, non-calcified/fleshy.
directly to the ambient treatment aquaria or through a desiccant (DRIERITE Laboratory Air and Gas Drying) unit before being blended with pure CO₂. A CO₂ gas analyser (LI-COR 820) was used to manually set and log the concentration of CO₂ in the CO₂–air blend that entered aquaria. Blank control aquaria (n = 3 per treatment), which did not contain living samples, were maintained to quantify potential impacts the organisms may have had on seawater carbonate chemistry, though unlikely given the flow-through nature of the system. Ambient pH conditions were set to represent field conditions at the site of seawater intake. The desired decreased pH levels and saturation states were created by constantly bubbling a CO₂–air blend into individual treatment aquaria (1-l glass aquaria) at a rate sufficient to lower the seawater pH (pH₅₅) by 0.2 ± 0.05 (Figure 1) from ambient given that the aquaria water residence time was ~4 min.

Temperature treatments
Ambient temperatures were set according to field conditions at the site of seawater intake. Elevated temperatures of 2 ± 0.5°C in the experimental aquaria (Figure 1) were created by placing the aquaria
inside a large water bath that was heated using aquarium heaters (Hydro Thermal Submersible 400 W). Six water baths were used with three ambient and three with the elevated temperature treatment. The position of aquaria bubbled with high CO$_2$ ($n = 4$ per water bath) and that of aquaria bubbled with ambient air ($n = 4$ per water bath) were alternated within each bath.

In situ pH and temperature data acquisition

An autonomous Ion Sensitive Field Effect Transistor (ISFET) Honeywell Durafet pH sensor (hereafter called SeaFET; Martz et al., 2010) was deployed next to the SIO seawater intake pipe, allowing for continued monitoring of ambient field conditions (Figure 1). Measurements were taken every 15 min, and discrete samples for total alkalinity (AT) and dissolved inorganic carbon (DIC) were collected weekly from alongside the sensors for calibration and quality control. The water samples were analysed in the Dickson laboratory at SIO according to standard operating procedures (SOPs; Dickson et al., 2007). The sensor was serviced monthly to remove biofouling organisms that may have affected sensor measurements.

Monitoring experimental conditions

Temperature and pH$_{aw}$ were measured daily at midday (13:00 PST ± 2 h) in all aquaria using a hand-held pH meter (HACH HQ40d Portable pH, Conductivity, Dissolved Oxygen, ORP and ISE Multi-Parameter meter). The glass electrode pH probes (HACH, PCH201) were calibrated daily against certified Tris buffer from the Dickson laboratory at SIO to account for probe error and drift. Minor adjustments were made to bubbling rates in individual aquaria if the experimental pH did not lie within the desired window of 0.2 ± 0.05 pH units below ambient. Temperature and pH$_{aw}$ were also continuously logged (Honeywell Durafet Non-Glass pH Electrodes) every 15 min in one blank control ambient air, ambient temperature, and one CO$_2$ enriched, elevated temperature aquaria (if a warming treatment was used; Figure 1).

In addition to temperature, light intensities were continuously logged every 15 min (Onset HOBO® Pendant UA-002-64) in the control aquaria without algae. Light intensities, measured in lux, were converted to available photosynthetically active radiation (PAR) using the following conversion: 1 μmol photon m$^{-2}$ s$^{-1} = 51.2$ lux (Valiela, 1984; Supplementary Figure S1). These conversions were validated by additional PAR measurements made in the water baths, using a LICOR 480 sensor.

To quantify the effects of treatments on water chemistry, water samples were collected from all control aquaria (without algae; $n = 6$ for pCO$_2$-only experiments and $n = 4$ for factorial pCO$_2$ and warming experiments) and one aquaria per treatment per species at two time points or more during each experiment. The samples were collected and analysed in the Dickson laboratory at the SIO according to the SOP (Dickson et al., 2007). Total DIC was determined using a Single Operator Multi-parameter Metabolic Analysers (SOMMA) and an UIC Model 5011 CO$_2$ analyser (SOP 2). AT$_{w}$ was determined by open cell acid titration using a Metrohm Dosimat Model 665 and Thermo Scientific Ross potentiometric pH probe and meter (SOP 3b). Salinity was determined using a Metler Toledo Model DE45 density meter. Seawater DIC parameters (HCO$_3^-$, CO$_3^{2-}$, CO$_2$, and pCO$_2$), pH$_{aw}$, and saturation state of carbonate minerals (Ω-calcite and Ω-aragonite) were calculated based on measured DIC and AT$_{w}$ using the computer program CO2SYS (version 14; Pierrot et al., 2006) and stoichiometric dissociation constants defined by Mehrbach et al. (1973) and refit by Dickson and Millero (1987) (Table 2).

Table 2. Mean seawater chemistry ± SE including both blank control aquaria and aquaria with macroalgae; discrete samples were collected and analysed in the Dickson laboratory at SIO according to the SOP (Dickson et al., 2007). Total DIC was determined using a Single Operator Multi-parameter Metabolic Analysers (SOMMA) and an UIC Model 5011 CO$_2$ analyser (SOP 2). AT$_{w}$ was determined by open cell acid titration using a Metrohm Dosimat Model 665 and Thermo Scientific Ross potentiometric pH probe and meter (SOP 3b). Salinity was determined using a Metler Toledo Model DE45 density meter. Seawater DIC parameters (HCO$_3^-$, CO$_3^{2-}$, CO$_2$, and pCO$_2$), pH$_{aw}$, and saturation state of carbonate minerals (Ω-calcite and Ω-aragonite) were calculated based on measured DIC and AT$_{w}$ using the computer program CO2SYS (version 14; Pierrot et al., 2006) and stoichiometric dissociation constants defined by Mehrbach et al. (1973) and refit by Dickson and Millero (1987) (Table 2).
Response variables

Algal growth rates were calculated as a change in wet weight for fleshy algae and a change in buoyant weight (Davies, 1989) for calcareous algae. The fleshy algae were spun in a salad spinner, then gently blotted dry with paper towels before being weighed. Samples were weighed immediately before and after the experiments, and growth rates were calculated as the difference between final and initial, standardized by initial weight and by the duration of the experiment (g g⁻¹ d⁻¹).

Dark-adapted yield, a proxy for photosynthetic efficiency, was measured using a submersible pulse amplitude modulation (PAM) fluorometer (DIVING-PAM, Walz, Germany). The ratio of variable to maximal fluorescence in a darkened sample is correlated with the quantum yield of photosynthesis and is a convenient measure of the maximum potential quantum yield (Björkman and Demmig, 1987; Jones et al., 1999). The maximum quantum yield was determined by dark adapting the algae for 1 h at the end of each experiment. After dark adaption, \(F_v/F_m \) was measured using a saturating pulse with the diving PAM.

Photosynthetic pigments were assessed by collecting a wet weight tissue sample (<0.1 g) from each specimen at the end of each experiment. Samples were submerged in 1.0 ml of dimethylformamide and stored in the dark at 0°C for at least 24 h. The resulting liquid was transferred to glass cuvettes and absorbance at wavelengths: 480, 510, 630, 643, 664 and 750 nm was measured using a spectrophotometer (HP 8453) to quantify chlorophyll \(a \) and carotenoid content. Pigment concentrations were calculated based on Jeffrey and Humphrey (1975) and normalized to each subsamples wet weight. Phycobilin pigment content was assessed for red algae from two experiments (Supplementary Table S3) following the protocol developed by Rosenberg and Ramus (1982) in phosphate buffer and was normalized to subsample wet weight.

CA activity was assessed for all samples from two experiments using the potentiometric technique described by Giordano and Maberly (1989). Immediately following the end of each experiment, 1.0 g tissue (wet weight) was removed from each algal specimen; \(P. cartilagineum \) samples were flash frozen in liquid nitrogen before being placed in −80°C freezer, and \(D. undulata \) and \(S. horneri \) samples were placed directly in a −80°C freezer, until they could be processed. Preliminary trials demonstrated no difference in CA activity expression between the two freezing methods (data not shown). Total CA was extracted on ice (at 5°C) by grinding the algal samples with acid-washed sand and 5 ml of Tris-borate buffer. Extracted enzymes were separated from ground algal contents by centrifugation [as per Giordano and Maberly (1989)]. The supernatant was aliquoted into two portions: one to measure enzymatic activity and one as a control (boiled at 100°C for 10 min to denature the enzyme). The reaction was initiated by adding 1.5 ml of distilled deionized water, saturated with \(CO_2 \) using dry ice, to 0.1 ml of the supernatant stirred in a glass reaction chamber kept at 5°C with 15 ml of phosphate buffer (pH 8.36 ± 0.02). Hand-held pH meters (HQ40d HACH) with glass electrode pH probes (PHC201 HACH) were used to record the time taken for the pH to fall from 8.2 to 7.8. Probes were three-point calibrated daily to NBS buffers. The relative rate of pH decline, which was assumed to be linear, was compared between treatment samples and boiled controls. CA activity units were standardized by the fresh weight of the alga.

Statistical analysis

Mean values (± standard error) were calculated for growth rates, \(F_v/F_m \) pigment analysis, and CA activity for each species and treatment combination. All statistical analyses were completed with the program JMP (version 10). The assumption of normality was validated using the Shapiro–Wilk test and Normal Quantile Plots of residuals. For the elevated \(pCO_2 \)-only experiments where data were normal, a two-tailed t-test was used to test the null hypothesis that elevated \(pCO_2 \) had no effect on the response variables. For the factorial experiments of \(CO_2 \) addition and warming (both fixed factors with two-levels), a two-way analysis of variance (ANOVA) was used to examine differences among treatments. Post hoc contrasts were used to compare relative responses among subsets of treatments.

Results

By bubbling a \(CO_2 \) blend into treatment aquaria, we successfully maintained the two distinct treatments, ambient and elevated \(pCO_2 \), while simultaneously incorporating natural pH variability (Figure 1 and Table 2).

Response of native vs. invasive fleshy species to increased \(pCO_2 \)

The invasive fleshy brown alga \(S. horneri \) was not affected by the high \(CO_2 \) treatment relative to the controls (\(t_8 = 0.57, p = 0.57 \); Figure 2a); however, the native fleshy brown alga species \(D. undulata \) experienced increased growth rates when exposed to high \(CO_2 \) (\(t_8 = 2.22, p = 0.03 \); Figure 2a). Photosynthetic performance as measured by CA (Figure 3 and Supplementary Table S1), pigment concentrations (chl \(a \), carotenoids, and phycobilins) (Supplementary Tables S3 and S4), and \(F_v/F_m \) (Figure 4 and Table 2) were not affected by the \(pCO_2 \) treatments (Supplementary Tables S1–S4). CA activity, irrespective of the \(CO_2 \) treatment, was detected in \(D. undulata \) and \(S. horneri \) relative to controls containing the denatured enzyme suggesting the use of CA as a CCM (Figure 3 and Supplementary Table S1).

Response of articulated vs. encrusting calcified algae to increased \(pCO_2 \)

Both of the coraline algae, \(J. adhaerens \) (articulated) and \(L. californicum \) (encrusting), showed a negative growth response to elevated \(pCO_2 \), but these trends were not statistically significant (\(J. adhaerens: t_{18} = 1.58, p = 0.13; L. californicum: t_{18} = 0.37, p = 0.71 \); Figure 2b). \(F_v/F_m \) (Figure 4) for both species and pigment concentrations for \(J. adhaerens \) (chl \(a \) and phycobilins) were not affected by the \(pCO_2 \) treatments (Supplementary Tables S2, S3, and S5).

Response of fleshy and calcified macroalgae to increased \(pCO_2 \) and warming

\(P. cartilagineum \) grew over the course of the factorial experiment in all treatments, aside from the warming-only treatment where it lost biomass. However, exposure to elevated \(pCO_2 \) mitigated the negative temperature effect so that, on average, the warmed specimens gained 170% more mass when simultaneously exposed to elevated \(pCO_2 \) (Figure 2c). Thus, there was a significant interaction between the increased \(pCO_2 \) and warming treatments on the growth rates of \(P. cartilagineum \) (two-way ANOVA, \(pCO_2 \times Temp: F_{1,36} = 6.96, p = 0.012 \); Figure 2C). Elevated \(pCO_2 \) significantly affected overall growth rates, but to different magnitudes and in opposing directions depending on temperature exposure. In ambient temperature conditions, elevated \(pCO_2 \) depressed growth of \(P. cartilagineum \) by 45% on average compared with the untreated specimens; however, this difference was not significant due to high variability between replicates. CA (Figure 3 and Supplementary Table S1),
pigment concentrations (chl a and phycobilins; Supplementary Tables S3 and S6), and F_v/F_m (Figure 4 and Supplementary Table S2) were not affected by any treatment, or combination thereof. Activity levels of CA were found to be positive for $P. cartilagineum$ relative to denatured enzyme controls, suggesting that the enzyme is active and used as a CCM by this alga (Figure 3 and Supplementary Table S1).

Corallina vancouveriensis, an articulated coralline alga, experienced negative growth rates due to bleaching and tissue fragmentation across all treatments (Figure 2d). Despite this overall loss, there were detectable significant effects of pCO_2 on growth and calcification (two-way ANOVA, pCO_2: $F_{1,36} = 30.42$, $p < 0.01$; Temp: $F_{1,36} = 1.03$, $p = 0.31$; $pCO_2 ×$ Temp: $F_{1,36} = 1.91$, $p = 0.17$). Growth rates for $C. vancouveriensis$ were significantly reduced by 420% when exposed to increased CO_2. The combination of increased CO_2 and temperature relative to control ambient conditions also had a negative effect on growth, although those two treatments did not differ significantly from each other. *Corallina vancouveriensis* was not affected by increased temperature alone. F_v/F_m (Figure 4 and Supplementary Table S2) and pigment concentrations (chl a; Supplementary Tables S3 and S7) were not affected by any treatment, or combination thereof.

Discussion

We investigated the effects of CO2 enrichment alone and the independent and combined effects of CO2 enrichment and warming on common species of temperate marine algae. We expected the fleshy algae to respond positively or not at all to increases in CO2 depending on their ability to use CA as a CCM. Our results showed that while one of three fleshy taxa did in fact respond positively to CO2 elevation, we were not able to correlate these responses to CA activity (or lack thereof). One of three calcareous algae species was negatively affected by elevated CO2, as hypothesized, whereas the other two
calcareous taxa showed no response. Both fleshy and calcified macroalgae were expected to be positively affected by increased temperature; however, we found negative effects on fleshy *P. cartilagineum* and no effect on calcareous *C. vancouveriensis*. For *P. cartilagineum*, we found a significant interaction between elevated pCO2 and temperature while a significant interaction was absent from the *C. vancouveriensis* experiment, suggesting that the responses of benthic marine communities to global change are likely to be complex.

The increase of CO2 and/or temperature did not affect F_v/F_m or pigment concentrations for any of the calcified and fleshy macroalgae examined (Supplementary Tables S2–S7). Similar studies have likewise found no effect of elevated CO2 on these physiological response variables. Cornwall et al. (2013) exposed a temperate calcifying coralline, *Arthrocladia corymbosa*, to elevated CO2 conditions for 40 d, and found that while algal growth rates were significantly reduced, there was no effect of increased CO2 on F_v/F_m or pigment concentrations. Hofmann et al. (2012b) also found that F_v/F_m was not affected by increased CO2 in the temperate calcified macroalga *Corallina officinalis*, although it also exhibited significantly reduced growth rates. Despite these results, one would still expect to see some form of enrichment of photosynthesis as more CO2 is made available; perhaps measuring photosynthesis directly via oxygen evolution would be more appropriate in future studies. Given the diversity in algal taxonomy, morphology, and physiology, it is not surprising that the responses of different species to elevated CO2 and/or warming are largely species-specific (Price et al., 2011; Comeau et al., 2014; Johnson et al., 2014a).

Increased pCO2 impacts on invasive vs. native species

We compared the response of a native and an invasive brown alga to elevated pCO2 conditions, and found that the native *D. undulata* may grow faster under future pCO2 conditions than the non-indigenous *S. horneri*. This suggests that *D. undulata* may be more successful than *S. horneri* under future OA conditions. Though *S. horneri* can invade new habitats under current conditions (Miller et al., 2007), its competitive ability under future OA conditions may be reduced. Many studies have shown that elevated pCO2 positively affects terrestrial invasive species; however, few marine examples exist. Nagel et al. (2004) found that an invasive desert grass had a significant reduction in the energetic cost of above-ground biomass construction under CO2 enrichment, which its native counterpart did not exhibit. Mateos-Naranjo et al. (2010) reported that an invasive *Spartina* (saltmarsh grass) exhibited increased growth under elevated atmospheric CO2. While individual species growth rates differ in our study, the invasive, brown fleshy alga *S. horneri* was not significantly affected by elevated pCO2, whereas the native, brown fleshy *D. undulata* was significantly positively affected, suggesting differential effects on competitive interactions with future OA.

Increased pCO2 impacts on encrusting vs. articulated coralline algae

Calcareous algae face a paradox under elevated pCO2 conditions. While there is increased CO2 available for photosynthesis, the corresponding decrease in carbonate saturation state may limit their ability to calcify. Here, CO2 enrichment consistently had a negative effect on growth, although the magnitude of the response was species-specific and differed greatly between the articulated and crustose coralline algal species. McCoy and Ragazzola (2014) argued that increased pCO2 may be more stressful for species of calcified algae with thicker cell walls and crusts, because they contain larger quantities of skeletal calcium carbonate (CaCO3) per unit biomass of photosynthetic tissue. Our results indicated that *C. vancouveriensis*, a densely branched species with a high surface area to biomass ratio, exhibited the largest negative response, suggesting that the amount of tissue exposed to reduced carbonate saturation state water may contribute to the strong negative responses observed. Furthermore, the effects of OA may not be as negative to coralline algae photosynthesis as early research indicated. While it is widely accepted that net calcification rates are expected to decline, our study and others (Hofmann et al., 2012b; Cornwall et al., 2013) have yet to find a relationship between declining net calcification and photosystem functions, such as F_v/F_m and pigment concentration.

Increased pCO2 impacts on fleshy vs. calcareous algae

Overall, fleshy algae responded more positively to elevated CO2 than calcareous algae. One of the three fleshy species used in experiments had a significantly positive response to increased CO2, whereas one...
of the three calcified species had a significantly negative response; no calcified algae were positively affected, and no fleshy algae were negatively affected by increased CO2. This is in agreement with the most findings thus far in the literature [reviewed in Kroeker et al. (2010, 2013), Hendriks et al. (2010), and Johnson et al. (2014a)]. CO2 enrichment resulted in significantly increased growth rates for the fleshy D. undulata, while the other two fleshy species were not affected. Other studies have found that other species of fleshy algae exhibited increased growth rates under elevated CO2 (Zou, 2005; Connell and Russell, 2009; Russell et al., 2009). However, until we understand the physiological mechanisms behind these responses to increased CO2, predicting species’ responses to OA will be challenging.

Synergistic interactions of increased pCO2 and warming

We hypothesized that increased temperature would positively affect both fleshy and calcareous algae, but that fleshy algae would have a synergistically positive response to increased temperature and CO2. Interestingly, for the fleshy red alga P. cartilagineum, the effects of CO2 on growth rate were only positive under increased temperatures, suggesting that the increase in temperature offsets the negative effects of increased CO2. Growth rates were negative overall in response to increased temperature, despite the antagonistic interaction with exposure to elevated pCO2. During the course of the experiment (November–December 2012), the average ambient seawater temperature was 17.21 ± 0.07°C (± SE), whereas the average elevated temperature treatment was 19 ± 0.06°C (Figure 1). However, for 2011 and 2012, the maximum temperature recorded off the SIO Pier in the summer (June–September) was 22.48 and 23.94°C, respectively (SCCOOS, publicly available data). The resulting loss of biomass is surprising, therefore, since the experimentally elevated temperature was well within the natural temperature range. The negative response may have been in part a result of the shock from the rapid introduction of algal specimens into warm experimental conditions, rather than gradual acclimation as they would experience seasonally. These algae were collected from the intertidal however, where they likely experience large daily fluctuations in temperature and pH. The loss in biomass therefore may not have been a negative reaction after all, but could have been a result of increased reproductive fragmentation. A study completed in Stillwater Cove, Carmel Bay, California, found that P. cartilagineum produces spores throughout the entire year, with slight peaks in spring and summer (Downing, 1995), and that P. cartilagineum utilizes vegetative fragmentation as a form of reproduction. Since the experimental temperature increases simulated summer conditions, the alga may have increased vegetative fragmentation, causing the high temperature treatment to lose biomass. All algal fragments found during the experiment were collected; however, because of the flow-through nature of the experimental design, it was not always possible to identify the fragments’ origin.

The calcareous species C. vancouverensis was significantly negatively affected by elevated CO2, regardless of temperature. Similar negative effects were found by Hofmann et al. (2012a, b) who exposed C. officinalis to elevated CO2 levels. In each study, they found C. officinalis to have decreased growth rates and hypothesized that it may become less competitive under future CO2 levels. Diaz-Pulido et al. (2012) also found similar negative results of elevated CO2 on a tropical coralline alga, with rates of advanced partial mortality (% dead white, and green areas colonized by endolithic algae) increasing from <1 to 9% under high CO2. Unlike the results presented here, they found that a 3°C increase in temperature exacerbated the effects of CO2 and partial mortality increased to 15%. The temperature treatment did not affect C. vancouverensis in this study.

CCMs as a CO2 relief mechanism for fleshy species

We did not find significant effects of elevated pCO2 on CA activity; however, this may be an artifact of the methods used to measure the enzymatic activity. It may also be that, given the differential response of fleshy algal growth to CO2 relative to calcifier growth, CCMs such as CA may be mechanisms underlying different responses. CCM activity levels may be responsive to other environmental factors not tested in these experiments. For example, Cornwall et al. (2015) suggests that the activity levels of CCMs of some species may be more flexible to light levels, rather than CO2. Additionally, downregulation of any active CCM component, which uptakes bicarbonate, directly may explain changes in growth rates, pigmentation, etc., as CA enzymes are just one example of a CCM.

Although the treatment effects were not significant, CA activity was found in the fleshy algae, D. undulata and S. hornieri. There have been no other studies investigating CA activity in either of these species. Thomas and Tregunna (1968), however, reported that Sargassum muticum does not directly use CO2 for photosynthesis, thus concluding that it must use bicarbonate ions for photosynthesis. If S. hornieri also relies on bicarbonate, as opposed to CO2 for photosynthesis, this species may not downregulate CA activity, preventing it from taking advantage of the more readily available CO2 for growth. If this is the case, then future OA conditions may limit the success of invasive S. hornieri when compared with native species in similar subtidal habitat such as D. undulata.

Although P. cartilagineum growth rates were not affected by an increase in CO2 alone, high levels of CA were found. While isotopic evidence from Raven et al. (2005) suggested that P. cartilagineum relies on diffusive uptake of CO2 rather than CCMs, Mercado et al. (2009) show that in fact several of these algal species may actually have higher CA activity than species where evidence generally points towards the presence of CCMs. The lack of response to increased CO2, but the detectable CA enzyme activity units, suggests that P. cartilagineum may not have been carbon-limited in our experimental setting. If so, then P. cartilagineum may be less competitive against other fleshy species in the future, such as D. undulata, which was able to utilize increased CO2 in our experiments.

Conclusions and implications

The data presented here provide additional support for the hypothesis that the responses of marine algae to increased pCO2 will be species-specific, but in general more negative for calcifying vs. fleshy taxa. We provide data on a small subset of the diverse assemblage of macroalgae common on temperate shores that contribute to the growing body of information on the likely future effects of OA. More information is still needed on the responses of species to more gradual and thus more realistic increases in pCO2 to allow for acclimatization or adaptation. Additionally, more long-term experiments [multiple months; as in Martin and Gattuso (2009) and Form and Riebesell (2012)] are needed as lengthened experiments may reveal impacts on organisms that are missed in shorter duration experiments (Dupont et al., 2010). Finally, the interactive effects of multiple stressors, including additional local and global impacts, are needed to improve our predictive capacity of future change. It must be emphasized that a variety of response variables be examined to identify additional effects of OA, warming, and their interaction to be able to extrapolate these effects to an ecosystem level.
Macroalgae are ecosystem engineers, providing habitat, refugia, and energy as a food source to countless organisms in coastal habitats. Understanding how climate change will affect them will give researchers a better idea of how coastal ecosystems may change in the coming centuries.

Acknowledgements
We thank Molly Gleason, Samantha Clements, and Alex Neu for their help collecting specimens and maintaining experiments in the laboratory. Funding was provided by NOAA (NA10OAR4170860), California Sea Grant (R/CC-05), and the CSU Council for Ocean Affairs, Science, and Technology (COAST).

Supplementary data
Supplementary material is available at the ICESJMS online version of the manuscript.

References

Handling editor: Joanna Norkko