Thesis Defense by Katie Harrington-July 11th

Seasonal time-energy allocation of an island-restricted Falconid, the Striated Caracara, using a low-cost, open-source inertial movement GPS logger

A Thesis Defense by Katie Harrington

Vertebrate Ecology Lab

Thursday, July 11th, 2019 at 12 pm

MLML Seminar Room

Katie began research on striated caracaras in 2015 and has since took over leadership of a long-term research site begun by Hawk Mountain Sanctuary in 2010. Along with overseeing and implementing the expansion of a banding program and educational outreach to farmers and schoolchildren in the islands, Katie’s research has focused on striated caracaras’ seasonal movements, feeding ecology, and energy use. Katie is currently collaborating with researchers in mainland South America to study the population genetics of striated caracaras within and beyond the Falklands, and to support and encourage research into their little-known populations in Chilean and Argentine Tierra del Fuego.

 

Thesis Abstract:

According to life history theory, animals should have adaptive strategies to cope with seasonal fluctuations in resource availability. However, the introduction of human settlements to natural landscapes can affect the spatial and temporal patterning of resources and disrupt the naturally occurring resource variation to which an animal is adapted. Human subsidies impact animal populations by affecting their density, population growth rate, and abundance. Research has shown that island species dependent on human subsidies are more prone to population declines and local extirpations. While population level effects are known, little research has been aimed at individual level behavior and energy allocation effects. Here, I investigate the time-energy allocation and activity budgets of striated caracaras (Phalcoboenus australis), a scavenging and predatory Falconid in the Falkland Islands, a highly seasonal and human-subsidized environment. I developed the Tapered Wings Logger, a low-cost, lightweight inertial movement GPS logger, and made the logger design available for researchers and applicable across many systems. I deployed the loggers on caracaras to examine seasonal differences in time-energy allocation and activity budgets. The acceleration data were used to calculate overall dynamic body acceleration (ODBA, gravitational g), a proxy for energy expenditure, and to estimate behavioral state using hidden Markov models. I combined the GPS data with ecological knowledge of the species and study sites to help validate model results. Additionally, I investigated space use with daily distances traveled and home range kernel density estimates. My results suggest that on a daily scale, caracaras overwintering at a farm settlement worked 20% harder than in summer (24-hr ODBA: winter 2848.07 ± 577.26 g; summer 2380.85 ± 435.65 g [x̄ ± SD]). During daytime, hourly ODBA rates were nearly two times higher in winter compared to summer (winter 239.50 ± 51.61 g; summer 127.92 ± 26.01 g). Caracaras exhibited more intense activity in winter, spending twice as long in the high activity state compared to summer (winter 99.0 ± 45.2 min, summer 44.1 ± 26.1 min). In addition, during winter, caracaras traveled greater cumulative daily distances (winter 23.75 ± 7.50 km, summer 10.94 ± 3.29 km) and daily ranges were 13 times larger (95% KDE: winter 8.34 ± 11.04 km2, summer 0.64 ± 0.49 km2). This study emphasizes that even with human subsidies to cope with seasonal food availability, caracaras work harder in winter than in summer to obtain enough energy to meet daily requirements. Many island-restricted species will likely face increased variation in resource availability in response to environmental change and human population expansion. I suggest conservation managers consider these results for how to target their efforts to maximize the benefit during a critical life stage of a near threatened species.

Thesis Defense by Amanda Heidt-June 5th

Spatial characterization of meiofaunal community diversity along the California coast and potential abiotic drivers

A Thesis Defense by Amanda Heidt

Invertebrate Molecular Ecology Lab

Wednesday, June 5th, 2019 at 4 pm

MLML Seminar Room

Amanda is a master's student under Dr. Jonathan Geller in the Invertebrate Molecular Ecology Lab. Prior to her time at Moss Landing, she graduated with a B.S. in Marine Biology and a minor in Chemistry from the University of California, Santa Cruz and an A.A. in University Studies from MiraCosta Community College. Throughout her academic career, Amanda has worked for the Monterey Bay Aquarium as an animal husbandry technician in the Drifters Gallery, the aquarium's collection of local Cnidarian species, in addition to being a field technician for the Sea Otter Research and Conservation (SORAC) team. She has also logged several hundred dives as a Scientific Diver and PADI DiveMaster. Since coming to Moss Landing, she has worked as a laboratory technician processing samples for next-generation sequencing and has fortunately been able to travel to Hawaii, Baja, and Chile to conduct research. Going forward, Amanda will be entering the Science Communication Master's Program at the University of California, Santa Cruz in the fall of 2019 to further her keen interest in communicating science to various audiences. In addition to managing the Moss Landing student blog The Drop-In and working for the Stanford Center for Ocean Solutions as an Education Programs Assistant and Communications Intern, she recently completed a Science Communication Fellowship with KQED, where she wrote articles for Science News and helped produce episodes of the award-winning 4k YouTube series Deep Look. For more info, you can visit her website.

Thesis Abstract:

Due to their small size and taxonomic obscurity, meiofauna remain a fundamentally understudied group  despite their important position at the base of the sandy-beach food web and close association with the surrounding environs. This study aims to characterize meiofaunal community diversity in California across various spatial scales using next generation sequencing techniques and to assign potential abiotic drivers through the analysis of sediment samples using grain size analysis and X-ray powder diffraction (XRD) for mineral composition. Hypotheses suggest that (1) meiofauna will adhere to patterns established by the latitudinal diversity gradient (LDG) and known biogeographic breaks such as Point Conception, (2) meiofaunal communities will change as a function of beach profile (from reflective to dissipative), (3) meiofaunal communities will differ based on their tidal orientation (low-medium-high), and (4) communities will change based on sediment characteristics such as grain size and mineral composition. Analysis of this dataset continues, but preliminary results have found that communities tend to be more diverse in the southern sites (in keeping with the LDG), that significant differences in community composition exist as a function of tidal height, and that sediments vary significantly between sites with respect to mineral composition and grain size analysis. Ultimately, the results of this study will provide a detailed description of meiofaunal composition and abundance along a highly variable and biodiverse coastline and help to bolster meiofaunal sequence representation in molecular databases.

Thesis Defense by Heather Barrett-May 24th

The energetic cost of human disturbance on the southern sea otter (Enhydra lutris nereis)

A Thesis Defense by Heather Barrett

Vertebrate Ecology Lab

Friday, May 24th, 2019 at 4 pm

MLML Seminar Room

Heather Barrett is a master’s student under Dr. Gitte McDonald in the Vertebrate Ecology Lab. She graduated from the University of California Santa Cruz in 2009 with a B.S. in Ecology and Evolution and studied abroad in England, France, and Belize. Prior to her research at Moss Landing Marine Labs, Heather interned with the Monterey Bay Aquarium’s Sea Otter Research Program, worked abroad in education, managed data entry and fieldwork with California Department of Fish and Wildlife’s long-term biodiversity assessment in Northern California, and assisted with whale shark research in Mexico. Heather currently is a team member with Sea Otter Savvy and hopes to continue her work with research, science communication, and outreach.

Thesis Abstract:

With increased human populations and tourism in coastal areas, there is increased potential for disturbance of marine wildlife.  Impacts of disturbance are not well understood for many coastal species, such as the southern sea otter (Enhydra lutris nereis). Due to high metabolic rates, sea otters are at particular risk of increased energetic costs due to human disturbance. To investigate effects of disturbance, behavioral scans were conducted over three years to record sea otter activity in response to potential disturbance stimuli at three locations in California: Monterey, Moss Landing, Morro Bay. We developed a hidden Markov model to examine how activity varies as a function of location, time of day, group size, pup to adult ratio, habitat (kelp vs. open water), and occurrence of and proximity to potential disturbance stimuli. We combined our results with published estimates of activity-specific metabolic rates, translating changes in activity state into corresponding energetic costs. Our results indicate that the effects of disturbance stimuli on sea otter behavior are location specific, and vary non-linearly with distance from disturbance stimuli. Our model quantifies the distance-disturbance relationship, and calculates the distance at which the likelihood of disturbance is low: averaged across locations, there is <10% potential disturbance when stimuli are >54 meters away. We also estimate energetic costs(kJ) associated with various disturbance scenarios: for example, daily energy expenditure is expected to increase by 212.53kJ ± 15.75, 154.64kJ ± 13.84 and 62.54kJ ± 5, for Monterey, Moss Landing and Morro Bay, respectively, with six small-craft approaches of 20m for a 27.7kg male otter in kelp with 10 otters and a pup ratio of 0.25. Our analyses represent a novel approach for estimating behavioral responses and energetic costs of disturbance, thereby furthering our understanding of how human activities impact sea otters and providing a sound scientific basis for management.

Thesis Defense by Jessica Jang-March 29th

Reproductive strategies of the Big Skate (Beringraja binoculata, Girard 1855)

with evidence of multiple paternity

A Thesis Defense by Jessica J. Jang

Pacific Shark Research Center

Friday, March 29th, 2019 at 12 pm

MLML Seminar Room

Jessica Jang is a master’s student under Dr. David A. Ebert of the Pacific Shark Research Center (PSRC). She graduated from the University of Washington’s School of Aquatic and Fishery Science (SAFS) in a B.S. in Aquatic Fishery and Science and minors in marine biology and quantitative sciences. After graduation, she interned for the WildFish Conservancy in their Grays Harbor juvenile salmon survey in Westport, Washington surveying potential salmon habitats in the region. After being accepted into MLML, she has been working at the Marine Pollution Studies Lab, working on various projects involving pollutants found in fish and bivalves and occasionally volunteering at the Monterey Bay Aquarium.

 

Thesis Abstract:

Beringraja binoculata is a large skate species commonly caught, raised, and exhibited in public aquaria, especially along the Pacific coast of North America. It is one of two species in the Rajidae family found in the western Pacific able to produce multiple embryos within an egg case. Although recent studies suggest this species might be the most fecund elasmobranch currently known, there are no detailed studies on whether this species’ reproductive strategy is influenced by location and environment (e.g. captive vs. wild). Specimens collected from NOAA Fisheries Resource Analysis and Monitoring Division (FRAM) trawl surveys in 2008 and in 2014-2016 showed evidence that wild egg cases and embryo sizes were larger; 3-4 embryos per egg case were the most common, while 2 was the most common in captivity. Offspring sex ratio was not significant, but more female offspring than males was found in both environments. At approximately 42º North latitude, egg case sizes and embryo numbers peaked suggesting that the region is a suitable habitat to deposit offspring due to strong upwelling conditions from the California current ecosystem. Additionally, captive B. binoculata egg cases (n=10) were raised to observe developmental stages. New morphometric data was added to Hitz (1964) describing the developmental stages of this species. Paternity tests were conducted using microsatellites markers, showing multiple paternity exists within this species and females may store sperm for a minimum of three months in captivity, suggesting that B. binoculata possesses several reproductive strategies.

Thesis Defense by Stephen Pang-April 12th

The effect of sex ratio on the reproductive biology of two sex changing fish (Lythrypnus dalli and Rhinogobiops nicholsii)

A Thesis Defense by Stephen Pang

The Ichthyology Lab

Friday, April 12th, 2019 at 12 pm

MLML Seminar Room

Stephen Pang is a master's student under Dr. Scott Hamilton in the Ichthyology Lab. He graduated from the University of Washington in 2012 with a B.S. in biological oceanography. Prior to starting at Moss Landing Marine Labs, Stephen worked in Idaho and central Washington doing salmonid research. He recently completed the Sea Grant State Fellowship (where he was placed with the Delta Stewardship Council in Sacramento) and has recently joined an environmental consulting firm where he continues his work with salmonids and conservation.

Thesis Abstract:

By targeting the largest individuals in a population, size-selective fisheries can influence the life history traits and population parameters of exploited fish stocks. For protogynous (female-to-male) hermaphrodites, this type of harvest is also sex-selective since it preferentially removes males from the population. These differences in sex-specific survival can lead to populations that are heavily female-biased. While males historically have not been considered a limiting factor when assessing the health of gonochoristic populations, modeling work suggests that reduced male abundance and skewed sex ratios could cause a concomitant decline in the reproductive output of protogynous hermaphrodite populations. This study used two nest-brooding sex-changers, Lythrypnus dalli and Rhinogobiops nicholsii, to examine the effect of operational sex ratio on reproductive and nesting success, growth, and rates of sex change. Fish were outplanted on artificial patch reefs at varying sex ratios and their reproductive output was monitored by photographing eggs laid in artificial nests. Sex ratios ranged from 1:1 to 1:19 male:female. Fish were tagged so that growth and sex change could be determined upon recollection from the artificial reefs. For both L. dalli and R. nicholsii, total egg production, female per capita production, average production per nest, and the number of nests per reef were not affected by sex ratio. By contrast, male per capita production and the percentage of nesting males significantly increased as sex ratios became more female-biased. For R. nicholsii, growth rates were highest for individuals that completed sex change during the experimental period. During the breeding season, the frequency of sex change for R. nicholsii was highest on reefs that were strongly female-biased; there was no effect of sex ratio on the frequency of sex change during the non-breeding season. In L. dalli and R. nicholsii, it appears that males do not limit the reproductive output of heavily female-biased populations—as had been predicted by previous modeling work. Instead, for species that defend demersal nests, intrasexual competition between males (i.e., territory and mate monopolization) or females (i.e. competition for nest space) may limit total production when operational sex ratios are more balanced or more female-biased, respectively. As sex ratios became skewed in favor of females, male-male competition was relaxed and individual males became more reproductively successful; the discrepancy in per capita production between males and females at skewed sex ratios indicates that some females would increase their reproductive success by undergoing sex reversal (as demonstrated by R. nicholsii during the breeding season). It is possible that many of the results on reproductive success from this study are specific to nest-brooding species; this highlights the importance of mating systems and reproductive behavior when considering the impact of fisheries on the population dynamics of exploited populations.